The most dramatic demonstration of orientation columns comes from the use of voltage-sensitive dyes, developed over many years by Larry Cohen at Yale and applied to the cerebral cortex by Gary Blasdel at the University of Pittsburgh. In this technique, a voltage-sensitive dye that stains cell membranes is poured onto the cortex of an anesthetized animal and is taken up by the nerve cells. When an animal is stimulated, any responding cells show slight changes in color, and if enough cells are affected in a region close enough to the surface, we can record these changes with modern TV imaging techniques and computer-aided noise filtration. Blasdel stimulated with stripes in some particular orientation, made a photograph of the pattern of activity in a region of cortical surface a few centimeters in area, and repeated the procedure for many orientations. He then assigned a color to each orientation--red for vertical, orange for one o'clock, and so on--and superimposed the pictures. Because an iso- orientation line should be progressively displaced sideways as orientation changes, the result in any one small region should be a rainbowlike pattern. This is exactly what Blasdell found. It is too early, and the number of examples are still too few, to allow an interpretation of the patterns in terms of fractures and reversals, but the method is promising.